
 
Methodology: EM-Simulations with NX Magnetics  1 
Created by Dr. Binde Ingenieure GmbH,  www.drbinde.de  www.nxmagnetics.de, all rights reserved 
 

THEORY REFERENCE NX MAGNETICS 
This document describes the basics and procedural methods for electromagnetic simulation with the tool NX 

Magnetics (www.nxmagnetics.de) from the manufacturer Dr. Binde Ingenieure GmbH (www.drbinde.de). In the 

first chapter, the Maxwell equations on which the simulation is based are presented as well as the resulting 

application models. In the second chapter, the Laplace equation is used as an example to show in a theoretical 

way how the numerical solution method works using FEM. In the third and fourth chapters, the two interesting 

models of direct current simulation and EM simulation in the frequency domain are picked out and considered 

more from the application-oriented side.  
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1 GENERAL PRINCIPLES 

1.1  ELECTROMAGNETIC SIMULATION IN GENERAL 

1.1.1  GENERAL PRINCIPLE OF ELECTROMAGNETIC FEM 

In electromagnetic simulations, the Maxwell equations are solved. Depending on the application, e.g. In 

electrokinetics or magnetodynamics, the equations are simplified, or parts are omitted. For solving the 

equations, the finite element method has established itself - along with a few others. 

Vector quantities are shown in bold below. The time derivative is written with 𝜕𝑡 or 
𝑑

𝑑𝑡
. The mathematical 

operators used, rot (or curl), grad and div, can usually be found in mathematical formulas. 

The Maxwell equations are a set of the following four equations [Bossavit]: 

Ampere equation: 

 𝑟𝑜𝑡 𝒉 = 𝒋 + 𝜕𝑡𝒅 ( 1 ) 

Faraday equation: 

 𝑟𝑜𝑡 𝒆 = 𝜕𝑡𝒃 ( 2 ) 

Conservation of magnetic flux density: 

 𝑑𝑖𝑣 𝒃 = 0 ( 3 ) 

Conservation of electric flux density: 

 𝑑𝑖𝑣 𝒅 = 𝜌𝑔 ( 4 ) 

The symbols and their units mean: 

• h: magnetic field [A/m], 

• e: electric field [V/m], 

• b: magnetic flux density [T], 

• d: electric flux density [C/m2], 

• j: electric current density [A/m2], 

• ρq: Charge density [C/m3] 

In addition, there are the following material equations: 

Magnetic relation: 

 b = μ h ( 5 ) 

Dielectric relation: 

 d = ϵ e ( 6 ) 

Ohm-law: 

http://www.nxmagnetics.de/


 
Methodology: EM-Simulations with NX Magnetics  4 
Created by Dr. Binde Ingenieure GmbH,  www.drbinde.de  www.nxmagnetics.de, all rights reserved 
 

 j = σ e ( 7 ) 

The material properties contained therein and their units are: 

• μ: Magnetic permeability [H/m] 

• ε: Dielectric permeability [F/m] 

• σ: Electric conductivity [S/m] 

1.1.2  ANALOGY / DIFFERENCES TO STRUCTURAL MECHANICAL FEM  

Structural mechanical tasks are also mostly solved with the finite element method. In contrast to 

electromagnetics, which solves Maxwell's equations, structural mechanics solves equations of elasticity. These 

are also known as Hook's Law. The primary result is usually displacements at the nodes, with which the 

translation, rotation and deformation of a solid is described. The nodal displacements are then used to 

determine strains and, as a result, stresses on the elements. 

In electromagnetics, the results of interest are the magnetic and electrical field strengths h and e. From these, 

the other variables such as electrical current density j, magnetic and electrical flux density b and d can be 

calculated with the help of the material equations. From this, in turn, the other quantities of electric current, 

magnetic and electric flux can be derived by forming an integral. 

Due to the mathematical method used to formulate the Maxwell equations, which will be discussed later, the 

primary results are not directly h and e, but so-called potentials. These potentials are the magnetic vector 

potential a and the electrical scalar potential v. The potentials are linked to the quantities that are of interest in 

the following way: 

 𝒃 = 𝑟𝑜𝑡 𝒂 ( 8 ) 

 𝒆 = −𝜕𝑡𝒂 − 𝑔𝑟𝑎𝑑 𝑣 ( 9 ) 

By using this potential, the number of unknowns in the equations - and thus the calculation effort - is reduced 

considerably. 

Equation (8) results from the absence of sources of the magnetic field, i.e. from equation (3). Equation (9) can 

be derived from Faraday's equation and (8). 

The potentials themselves can also be represented in post-processing, but are generally to be understood as 

auxiliary variables that have no direct physical meaning. In some cases, however, a meaning can still be found, 

e.g. isolines from the magnetic vector potential a represent the field lines in 2D simulations. 

1.1.3  ASSIGNMENT / CLASSIFICATION OF ELECTROMAGNETIC FEM 

This section describes the basic properties of some electromagnetic tasks. 

1.1.3.1 STATIC PROBLEMS 

In the case of static problems, all sizes are independent of time. Therefore, all time derivatives can be omitted 

in the Maxwell equations. 

𝜕

𝜕𝑡
= 0 

1.1.3.2 TIME DEPENDENT PROBLEMS 
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In the case of time-dependent problems, the magnetic and electric fields are coupled to one another. This can 

be seen from the Maxwell equations: In the Ampere equation (1) the magnetic field h is also dependent on the 

change in the electrical flux density d over time. In Faraday equation (2), the electric field e is also dependent 

on the change in magnetic flux density b over time. 

In the general case, all these time derivatives must be considered. Simplifications are possible on the one hand 

for slowly changing processes (eddy current and skin effect problems) and on the other hand for processes that 

change very quickly (wave propagation). 

1.1.3.3 EDDY CURRENT AND SKIN EFFEKT PROBLEMS 

In the case of slowly changing processes in electrical conductors, the proportions of the conductor current j 

clearly outweigh the proportion of the displacement current: 

 𝒋 ≫ 𝜕𝑡𝒅 ( 10 ) 

Therefore, the ampere equation ( 1 ) can be simplified to 

 𝑟𝑜𝑡 𝒉 = 𝒋 ( 11 ) 

In these cases, eddy currents are considered by dynamic effects. It can be assumed that the entire current 

moves in a thin layer of the conductor called the skin. The thickness of this layer - also known as the skin depth 

- is calculated accordingly 

 𝛿 = √
2

𝜔𝜎𝜇0𝜇𝑟
 ( 12 ) 

 

therein: 

• ω is the natural free frequency, which is connected to the excitation frequency f via  

the relationship ω = 2πf 

• 𝜇0 is the constant vacuum permeability which has the value 4 ∙ 𝜋 10−7 H/m 

• 𝜇𝑟 the magnetic permeability of the area 

• σ the electrical conductivity of the area 

In the case of dynamic problems, the wavelength in an area often must be determined. This is calculated using 

the speed of light c and the frequency f 

 𝜆 =
𝑐

𝑓
 ( 13 ) 

The speed of light in a vacuum c0 is known as a constant and is often sufficient for estimations: 

 𝑐0 =
1

√휀0 𝜇0
≈ 3e8 m/s ( 14 ) 

1.1.3.4 SINUSOIDAL TIME DEPENDENCE 

Problems with sinusoidal excitation and linear material properties can be processed very advantageously with 

the help of complex calculations. The field sizes are specified as pointer sizes. This is shown below for a time-

dependent vector 𝐴 
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𝐴(𝑡) = 𝑅𝑒{|𝐴|  ∙  𝑒𝑗𝑤𝑡} 

Permanent magnets must not be involved here either, because every excitation is assumed to be sinusoidal. 

1.2  ELECTROMAGNETIC APPLICATIONS / MODELS IN NX MAGNETICS 

This chapter starts with a general discussion of the available models. Then two models are selected that are of 

particular interest and their theoretical principles and equations are presented. 

1.2.1  MODELS / APPLICATIONS IN NX MAGNETICS 

This section is based on lecture manuscripts from the University of Lüttig on the subject of “Applied & 

Computational Electromagnetics” [DularGeuzaine2009], [Geuzaine2012], as well as chapter 6 of the textbook 

“Simulations with NX” [AnderlBinde2014]. 

The following figure shows use cases or models that are of interest in electromagnetic simulation and that can 

arise from Maxwell's equations. 

 

Figure: Electromagnetic use cases and models 

The six models that can be derived from Maxwell's equations differ in the way in which they take into account 

the effects of capacitance, ohmic resistance and inductance. Accordingly, symbols for capacitor, resistor and 

coil can be assigned: 

 Electrostatics: Static charges or electrical voltages are specified. As a result, we get the 

distribution of the electric field. This corresponds to a consideration of the capacitive properties (hence the 

symbol of a capacitor). 

 Electrokinetics: (Also called DC Conduction) We consider the static distribution of electrical 

current in conductors. The most important property is electrical conductivity or ohmic resistance (hence the 

symbol of resistance). 

 Electrodynamics: This is a combination of electrostatics and kinetics. The distribution of the 

electric field and electric currents in materials (conductors and non-conductors) is considered. This can also 

lead to dynamic effects. 
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 Magnetostatics: We consider the static magnetic field that can result from permanent 

magnets and stationary electrical currents. Because this corresponds to the effect of inductance, we choose the 

symbol of the coil. 

Magnetodynamics: The result is the magnetic field and eddy currents, which result from 

moving magnets or time-varying currents. The coil with resistance is suitable as a symbol because these two 

effects are considered. 

Full Wave (High frequency): This includes the consideration of complete electromagnetic 

waves. This requires that all three effects of capacitance, resistance and inductance be considered. This can be 

used to determine vibrations and resonances, which is why the symbol of the electrical oscillating circuit is 

suitable. 

1.2.2  TWO RELEVANT APPLICATIONS IN DETAIL  

Two models / use cases that are of interest are selected and examined in more detail below. These are the 

applications of direct current simulation (DC Conduction Steady State) and dynamic simulation of the magnetic 

field in the frequency domain. 

1.2.2.1 DC CONDUCTION STEADY STATE 

This section deals with the application of direct current simulation. The electromagnetic model for direct 

current simulation is called electrokinetics. In NX Magnetics, the associated solution name is DC Conduction 

Steady State. 

According to [AnderlBinde2014], this model should be selected if 

• The wavelength of the exciting frequency is much larger than the component size. This criterion is met 

in any case if the power sources are stationary. 

• Only the stationary flowing electric current can be considered. I.e. only electrically conductive areas 

are of interest. In particular, the air is not considered. 

1.2.2.1.1 PRINCIPLE 

The aim of the direct current simulation is to determine the electrical current density and ohmic resistance 

over a sample structure or between electrodes on the sample. 

An example is the application of a circular disc with supply lines, the geometry of which is shown in the next 

picture. 
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Figure 1 Application of a conductive circular disc with leads for direct current simulation 

The ohm resistance that results between the two leads is to be calculated. This task is presented in [Filtz] and 

[Korolonek]. 

1.2.2.1.2 RELEVANT PHYSICAL LAWS / EQUATIONS  

The Maxwell equations can be simplified for the DC simulation application as described below: 

Due to the stationary assumption, all time derivatives are omitted. The descriptive equations result 

• Ampere equation:  

𝑟𝑜𝑡 𝒉 = 𝒋 

it also follows from this 

𝑑𝑖𝑣 𝒋 = 0 

• Faraday equation:  

𝑟𝑜𝑡 𝒆 = 0 

because of rot e = 0 a scalar potential v can be introduced with 

𝒆 = 𝑔𝑟𝑎𝑑 𝑣 

• Ohm equation: 

𝒋 = 𝜎𝒆 

Substituting all three equations together gives the so-called strong formulation of the problem: 

 𝑑𝑖𝑣 (𝜎 𝑔𝑟𝑎𝑑 𝑣) = 0 ( 15 ) 

 

Wegen der Identität [VectorCalculus] 

𝑑𝑖𝑣 (𝑔𝑟𝑎𝑑 𝑓) =  ∆𝑓 =
𝜕2

𝜕𝑥2
 

this equation can be rewritten with the help of the Laplace operator in such a way that the well-known Laplace 

equation can be recognized: 

𝜎∆𝑣 = 0 

This equation ( 17 ) is the equation to be solved for the application of the direct current simulation. 

The equation contains the sought solution v in the second spatial derivative and is therefore called strong. For 

this reason, it must be converted into a weak formulation for the use of a numerical FEM method. We consider 
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the development of the weak formulation and the further steps up to the solution in the chapter General 

procedure. 

1.2.2.2 DYNAMIC-SIMULATION OF THE MAGNETIC FIELD IN FREQUENCY DOMAIN 

This section deals with the application of dynamic magnetic field simulation in the frequency domain. In NX 

Magnetics is the associated solution name Magnetodynamics Frequency. 

According to [AnderlBinde2014] the magnetodynamic model is to be selected if 

• The wavelength of the exciting frequency is much larger than the component size. In this case, 

according to equation ( 11 ) the displacement currents can be neglected in the ampere law. 

• The skin depth is smaller than the part size. So, there is a pronounced boundary layer and boundary 

layer effects with eddy currents play a role and must be taken into account. 

The magnetodynamic model can be solved in the frequency domain or in the time domain. The frequency 

solution should only be chosen if  

• sinusoidal excitation and 

• linear material properties exist and if 

• there are no permanent magnets. 

1.2.2.2.1 PRINCIPLE 

In the dynamic simulation of the magnetic field in the frequency range, the excitation frequency of the electric 

current or the voltage on the electrode surfaces is specified. As a result, the distribution of the magnetic field 

and the current distribution come out. 

An example is the application of an electrically conductive plate under an AC coil. The geometry is shown in the 

next picture. 

 

Figure 2 Use case conductive plate under an AC coil for dynamic magnetic field simulation in the frequency range 

The aim is to calculate the electric field in the plate that results from the induction of the coil. This task is 

known under the term TEAM Problem 3: The Bath Plate in the literature as a test example for electromagnetic 

simulations [TEAM3]. 

1.2.2.2.2 RELEVANT PHYSICAL LAWS / EQUATIONS 

The mathematics shown was taken from [Kost]. The Maxwell equations can be simplified as described below 

for the application dynamic simulation of the magnetic field: 

• Ampere equation:  

𝑟𝑜𝑡 𝒉 = 𝒋 , 
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𝑑𝑖𝑣 𝒃 = 0 

with the vectorpotential a as 

𝒃 = 𝑟𝑜𝑡 𝒂 

• Faraday equation:  

𝑟𝑜𝑡 𝒆 = 𝜕𝑡𝒃 

with the scalarpotential v as 

𝒆 = −𝜕𝑡𝒂 − 𝑔𝑟𝑎𝑑 𝑣 

• Ohm equation: 

𝒋 = 𝜎𝒆 

• Material law: 

𝒃 = 𝜇 𝒉 

The current j can be divided into an impressed current js and an eddy current jc. Then, the Ohm equation along 

with Faraday can be written as  

𝒋 = −𝒋𝑠 + 𝒋𝑐 = −𝒋𝑠 + 𝜎𝒆 = −𝒋𝑠 + 𝜎(−𝜕𝑡𝒂 − 𝑔𝑟𝑎𝑑 𝑣) 

Substituting in the ampere equation gives the strong formulation of the problem as 

𝑟𝑜𝑡(𝜇−1𝑟𝑜𝑡 𝒂) + 𝒋𝑠 + 𝜎 ∙ 𝜕𝑡𝒂 + 𝜎 ∙ 𝑔𝑟𝑎𝑑 𝑣 = 0 

Because of rot rot, the strong formulation contains the unknown function a in a dual spatial derivative. In order 

to develop a weak formulation, the usual procedure is multiplication by the weight or test functions a‘ and 

integration over the area Ω. Further explanations of this method can be found in a subsequent chapter under 

Develop formulation. Written in classic notation results 

< 𝑟𝑜𝑡(𝜇−1𝑟𝑜𝑡 𝒂) , 𝒂′ >Ω +< 𝒋𝑠 , 𝒂
′ >Ω + < 𝜎 ∙ 𝜕𝑡𝒂 , 𝒂

′ >Ω +< 𝜎 ∙ 𝑔𝑟𝑎𝑑 𝑣 , 𝒂
′ >Ω= 0 

In order to lower the dual rot rot derivative by one degree, we use the following Green’s identity, which is also 

called the theorem of the divergence of a vector product or rot-rot formula for short  

𝑑𝑖𝑣(𝐴 × �⃗⃗�) = �⃗⃗� (𝑟𝑜𝑡 𝐴) − 𝐴 (𝑟𝑜𝑡 �⃗⃗�) 

With this formula the dual rot operator on the left can be transformed into a simple one. For this, however, the 

weight function is given a rot operator. This procedure is also known as swapping the rot. It turns out 

< 𝑑𝑖𝑣(𝜇−1𝑟𝑜𝑡 𝒂 × 𝒂′) >Ω + 𝜇
−1𝑟𝑜𝑡 𝒂, 𝑟𝑜𝑡 𝒂′ >Ω +< 𝒋𝑠, 𝒂

′ >Ω + < 𝜎 ∙ 𝜕𝑡𝒂, 𝒂
′ >Ω +< 𝜎 ∙ 𝑔𝑟𝑎𝑑 𝑣, 𝒂

′ >Ω= 0 

Now we deal with the div term. We use the divergence theorem (also called Gauss theorem or Ostrogradsky's 

theorem), with the help of which the divergence of a volume integral can be converted into the flow over the 

surface: 

< 𝑑𝑖𝑣(𝐴 × �⃗⃗�) >Ω=< �⃗⃗� , 𝐴 × �⃗⃗� >dΩ 

Here n is the normal vector at the surface. In addition, we use the transformation 

�⃗⃗� ∙ (𝐴 × �⃗⃗�) = �⃗⃗� ∙ (�⃗⃗� × 𝐴) 

If this is written together, the result is 

 
< (𝒏 × 𝜇−1𝑟𝑜𝑡 𝒂 ) , 𝒂′ >dΩ +< 𝜇

−1𝑟𝑜𝑡 𝒂 , 𝑟𝑜𝑡 𝒂′ >Ω +
< 𝒋𝑠 , 𝒂

′ >Ωs + < 𝜎 ∙ 𝜕𝑡𝒂 , 𝒂
′ >Ωc +

< 𝜎 ∙ 𝑔𝑟𝑎𝑑 𝑣 , 𝒂′ >Ωc= 0 

( 16 ) 
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the weak form of the magnetodynamic formulation, also known as the a-v form, because potentials a and v are 

solved according to the unknowns. 

Here are the subregions for integration: 

• Ω: The whole area 

• dΩ: The boundary of the area 

• Ωs: Sub-areas with the direct indication of electrical current 

• Ωc: Sub-areas with electrical conductivity. Eddy currents can arise here. 

Further steps leading to the result of a specific task must be carried out in a very similar manner to that 

described in the next chapter for the general case, i.e. This is followed by the discretization of the area, the 

setting up of the approximation functions for the elements, setting up the system of equations, inserting 

boundary conditions, solving the system of equations and the post processing. 

2 GENERAL PROCEDURE 

The general procedure for the numerical solution using FEM is described in this chapter. Based on a task (step 

1), 8 steps are to be carried out: 

• Step 1: Task 

• Step 2: Develop formulation / choose solution type 

• Step 3: Discretization of the area / meshing 

• Step 4: Material and physical properties 

• Step 5: Establishing the approximation / shape functions for the elements 

• Step 6: Set up a system of equations 

• Step 7: Insert boundary conditions 

• Step 8: Solving the system of equations 

• Step 9: Post Processing 

These steps are examined in detail below and applied to a one-dimensional example. 

2.1  TASK 

The general mathematical procedure for the FE analysis of electromagnetic tasks is to be explained in this 

chapter. The mathematics shown was taken from [Kost]. For the calculation of a specific example, we limit 

ourselves to the one-dimensional case of a direct current simulation with two different materials. This task was 

taken over from [Bargallo]. 

The exemplary differential equation to be solved is the Laplace equation ( 15 ), which we derived in Section  

1.2.2.1 . This describes i.e. the application of electrokinetics or direct current simulation. It reads as follows: 

 𝑑𝑖𝑣 (𝜎 𝑔𝑟𝑎𝑑 𝑣) = 0 ( 17 ) 

In the specific case of the one-dimensional direct current simulation, this can be written in this way: 

 
𝑑

𝑑𝑥
(𝜎
𝑑𝑣

𝑑𝑥
) = 0    𝑥 ∈ (0, 𝐿) ( 18 ) 
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Here, v is the unknown function (e.g. the electrical potential in the case of direct current simulation), σ is a 

known parameter (e.g. the electrical conductivity). 

The boundary conditions are generally divided into Dirichlet and Neumann conditions. With Dirichlet the 

unknown is determined directly and with Neumann its spatial derivation is determined. One or the other 

boundary condition must be applied to the entire edge of the area. We define the Dirichlet condition on the 

boundary  𝛤1 and the Neumann condition on  𝛤2: 

𝑣 = �̅� 

𝑞
0
=
𝑑 𝑣

𝑑𝑛
 

For our concrete example of the one-dimensional direct current simulation, we define Dirichlet conditions at 

both limits and omit the Neumann condition: 

 𝑣(𝑥 = 0) = 𝑣0 ( 19 ) 

 𝑣(𝑥 = 𝐿) = 0 ( 20 ) 

2.2  DEVELOP FORMULATION / SELECT SOLUTION TYPE  

In this step, the governing physical equations are set up in such a way that they can be solved using numerical 

methods. The starting point is the strong formulation of equation ( 17 ) 

𝑑𝑖𝑣 (𝜎 𝑔𝑟𝑎𝑑 𝑣) = 0 

or for our one-dimensional example 

𝑑

𝑑𝑥
(𝜎
𝑑𝑣

𝑑𝑥
) = 0    𝑥 ∈ (0, 𝐿) 

In this strong formulation, the unknown quantity v is contained in the second derivative. In the numerical 

method, the quantity v is to be approximated by element-wise shape functions. In order to be able to use linear 

shape functions as well, v in the equation must be reduced by one order. This then corresponds to a weak 

formulation. The development of a weak formulation is usually done by weighting (multiplying) with test 

functions, integrating over the arithmetic domain and applying a Green identity, which ensures that the test 

functions are increased by one degree and the functions sought are reduced by one. This method of developing 

a weak shape is also called the method of weighted residuals. We want to describe them in more detail: 

When changing from the exact to the approximate solution, an error or residual R must be allowed, i.e. 

𝑑𝑖𝑣 (𝜎 𝑔𝑟𝑎𝑑 𝑣) = 𝑅 

The unknown solution v can be approximated by a sum of discrete node values vk, each weighted with a 

weighting function (also called shape function, test function or basis function) ak, i.e. be multiplied: 

𝑣 =  ∑𝛼𝑘 ∙

𝑝

𝑘=1

𝑣𝑘  
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Such a linear shape function for the one-dimensional case, for example for node 2, is shown in the next figure 

on the right. The approximate and the exact solution are shown on the left. With this approach, only the 

discrete node values vk must be set accordingly in order to obtain an approximate solution. 

 

So that the residual can be small, we allow it to be multiplied by weighting functions (test functions) that are 

named w. To minimize the residual, it is integrated over the area and set to zero. This means that it is made to 

disappear. This is also called orthogonalizing the residual to its weighting functions [Bargallo]. Hence it results 

∫𝑅 𝑤 𝑑Ω = 
 

Ω

∫[𝑑𝑖𝑣 (𝜎 𝑔𝑟𝑎𝑑 𝑣)]𝑤 𝑑Ω = 0
 

Ω

 

with initially arbitrary weight functions w. This idea is the core of the numerical method and the method has 

not only proven itself for the FEM, but also for other numerical methods such as the Finite Volume Method 

(FVM) or the Boundary Element Method (BEM). In the way in which the weighting function w is chosen, various 

approximation techniques differ from which we use the Galerkin method: Here, the same shape functions are 

used for the weighting of the residual as for the unknown solution v. I.e. later we equate the shape functions: 

𝑤𝑙 = 𝛼𝑙 

It should be noted here that two groups of weighting functions are now involved: One for the unknown 

solution v and one for the residual R. The group for the residual must be understood in such a way that it 

results in individual equations for each node. The overall system of equations will later be put together from 

these equations. 

This method of weighted residuals in connection with the Galerkin method is universal and will be pursued 

further below. Alternatively, another method is known as the variation method (also known as the variation 

integral or Rayleigh-Ritz method), which usually leads to the same solution. With this method, a calculation 

formula for the energy (LAGRANGE energy) of the electromagnetic field is established. The calculation rule for 

this energy is called the energy functional. It is required that this energy is minimal and this is achieved by 

deriving the energy according to all degrees of freedom and setting it to zero. This creates a linear system of 

equations for the degrees of freedom. In [Kost] it is shown that the same systems of equations arise from the 

variation method and the Galerkin method. 

In order to reduce the second derivative in the unknown function v, the first GREEN sentence is used. This says 

∫𝑈1Δ𝑈2 𝑑Ω =  −
 

Ω

∫ 𝑔𝑟𝑎𝑑 𝑈1 𝑔𝑟𝑎𝑑 𝑈2 𝑑Ω +∫𝑈1 𝑔𝑟𝑎𝑑 𝑈2�⃗⃗� 𝑑Γ
 

Γ

 

Ω

 

The first GREEN sentence can also be written in a form that is named in [DularGeuzaine2009] as the grad div 

Green formula. This identity can also be found in [VectorCalculus]: 

(u, grad v‘)Ω + (div u, v‘) Ω = ( n u, v‘ ) dΩ 

http://www.nxmagnetics.de/


 
Methodology: EM-Simulations with NX Magnetics  14 
Created by Dr. Binde Ingenieure GmbH,  www.drbinde.de  www.nxmagnetics.de, all rights reserved 
 

When writing this and some of the following equations, the classic notation is chosen, which is often used for 

weak formulations with test functions. Here ( , ) Ω means an integration over Ω and the comma means a 

multiplication. Vectors are marked either with an arrow or in bold. 

Put together it results 

 ∫  (𝜎 𝑔𝑟𝑎𝑑 𝑣) 𝑔𝑟𝑎𝑑 𝑤 𝑑Ω −∫ 𝜎𝑤
𝑑 𝑣

𝑑𝑛
 𝑑Γ = 0 

 

Γ

 
 

Ω

 ( 21 ) 

The boundary integral represents the Neumann boundary condition. In many practical cases 
𝑑 𝑣

𝑑𝑛
= 0  and thus 

this integral is omitted (then a homogeneous Neumann condition is present) otherwise it must be incorporated 

into the equation system by adding it to the right-hand side is added. The Dirichlet boundary condition can 

later be inserted into the equation system simply by setting v to the known values 

If these equations are now written together and a homogeneous Neumann boundary condition is assumed, 

then the sum of all n elements finally results 

 
∑∑[∫ 𝜎 𝑔𝑟𝑎𝑑 𝛼𝑘  𝑔𝑟𝑎𝑑 𝛼𝑙  𝑑Ω

 

Ω𝑖
] 𝑣𝑘  = 0  ,    𝑙 = 1…𝑝

𝑝

𝑘=1

𝑛

𝑖=1

 

 

( 22 ) 

In order to create an equation system with p equations for p nodes, p weight functions (shape functions) 𝛼𝑙 

must be introduced one after the other. The counter k therefore runs over all nodes. The counter i on the other 

hand only runs over those nodes that have an influence on the respective node k, i.e. across all neighboring 

nodes. In this way, the desired weighting is possible at node k. 

If the matrix elements 𝐾𝑙𝑘  resulting from the product 𝑔𝑟𝑎𝑑 𝛼𝑘 𝑔𝑟𝑎𝑑 𝛼𝑙 and the integration over the individual 

elements Ω𝑖   are combined to a matrix K and the unknown node potentials 𝑣𝑘   to a vector U, the linear system 

of equations is created 

𝑲 ∙  𝑼 = 0 

These matrix elements are specifically written down in a later section. 

2.3  DISCRETISATION OF THE AREA / MESHING 

In this step the area is divided into small sub-areas, i.e. finite elements. This can be done in several ways. 0D, 

1D, 2D and 3D elements are possible. 

For our example task we choose three 1D line segments that subdivide the area (0, L). Both elements and 

nodes are numbered, as shown in the figure below. The different materials can also be seen with 𝜎1,2 

 

Figure 3 Discretization of the one-dimensional sample task 
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2.4  MATERIAL- AND PHYSICAL PROPERTIES 

Depending on the physical equation to be solved, material parameters and other physical properties must be 

specified. These properties can be isotropic, i.e. the same in all spatial directions, or orthotropically, i.e. with 

different values in the three spatial directions. In addition, these quantities can also be functions of 

temperature or other quantities. 

In the case of direct current simulation (DC Conduction Steady State), only the electrical conductivity in the 

elements is required. For models with a magnetic field, the magnetic permeability and the magnetic 

remanence field strength in the case of permanent magnets are required. If the electric field is calculated, the 

electric permittivity is required accordingly [Hilzinger-Rodewald]. 

For our example we want to assume two different electrical conductivities σ1 and σ2. In addition, the 

conductivity should be isotropic and  𝜎1 =  2𝜎2. 

The electrical conductivity, as well as other material parameters, can be defined as a scalar value or as a vector 

in the three spatial directions. When specified as a vector, it is possible to use local, regional coordinate 

systems for this. In this case, transformation calculations from the respective local to the global coordinate 

system are required. 

A regional definition with orthotropic electrical conductivity is shown below. 

The following figure shows the example of the circular disc with the area divided into connectors (bold) and the 

circle (thin).  

 

Figure 4 Example of the circular disk with orthotropic material properties 

Let the circular area be defined orthotropically with the central coordinate system  

𝜎𝑙𝑜𝑐𝑎𝑙 = (
𝜎𝑥 𝑙𝑜𝑐𝑎𝑙
𝜎𝑦 𝑙𝑜𝑐𝑎𝑙

) 

The transformation matrix that results from the local coordinate system rotated by the angle ϕ is given by 

𝑅𝑜𝑡𝑀𝑎𝑡𝑟𝑖𝑥 = (
cos𝜑 sin𝜑 0
− sin 𝜑 cos𝜑 0
0 0 1

) 

The conductivity in global coordinates can now be specified as 

𝜎𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑅𝑜𝑡𝑀𝑎𝑡𝑟𝑖𝑥
𝑇 ∙ 𝜎𝑙𝑜𝑐𝑎𝑙 ∙ 𝑅𝑜𝑡𝑀𝑎𝑡𝑟𝑖𝑥 
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It should be noted that the global conductivity has now become a 9 component tensor. 

2.5  SET UP THE SHAPE FUNCTIONS FOR THE ELEMENTS 

In this step, the shape functions are set up with which the unknown solution is approximated. These can be 

linear or higher-order functions. They can also be assigned to nodes, edges or element areas.  

These assignments differ from solution type to solution type in NX Magnetics. Some are shown below: 

• 2D/3D Electrostatics:    Nodal degrees of freedom for potential v 

• 2D/3D Magnetostatics and -dynamics:  Edge degrees of freedom for potential a 

• 3D Magnetostatics and -dynamics:  Nodal degrees of freedom for potential v 

• 2D/3D Electrokinetics (DC current): Nodal degrees of freedom for potential v 

The degrees of freedom can be the magnetic potentials a and v or temperature T or mechanical displacement 

u. Linear, quadratic or even higher shape functions are possible. 

For this one dimensional example we choose linear functions, which are described below. 

In every e-th element, the unknown v should be approximated by 

𝑣𝑒(𝑥) =  𝑎𝑒 + 𝑏𝑒𝑥 . 

Here 𝑎𝑒 and 𝑏𝑒 are the constants to be found. This unknown should now be expressed by the node variables. 

For linear elements, there are two nodes on each element: one at 𝑥1
𝑒  and one at 𝑥2

𝑒. Inserted above, there are 

two expressions for the two unknown node variables: 

𝑣1
𝑒(𝑥) =  𝑎𝑒 + 𝑏𝑒𝑥1

𝑒 

𝑣2
𝑒(𝑥) =  𝑎𝑒 + 𝑏𝑒𝑥2

𝑒 

Solve for 𝑎𝑒 and 𝑏𝑒 gives 

𝑏𝑒 = 
𝑣2
𝑒 − 𝑣1

𝑒

𝑙𝑒
 

𝑎𝑒 =  𝑣 −
𝑣 − 𝑣

𝑙𝑒
∙ 𝑥1

𝑒 

𝑙𝑒 = 𝑥2
𝑒 − 𝑥1

𝑒 

Inserted into the above approach function results 

𝑣𝑒(𝑥) = (
𝑥2
𝑒 − 𝑥

𝑙𝑒
) 𝑣1

𝑒 + (
𝑥 − 𝑥1

𝑒

𝑙𝑒
)𝑣2

𝑒 = ∑𝛼𝑗
𝑒(𝑥) ∙

2

𝑗=1

𝑣𝑗
𝑒 

𝛼1
𝑒(𝑥) =

𝑥2
𝑒 − 𝑥

𝑙𝑒
 

𝛼2
𝑒(𝑥) =

𝑥 − 𝑥1
𝑒

𝑙𝑒
 

The two functions α are also called basis functions. These are shown graphically in the following picture. 
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Figure 5 Representation of the shape functions in a one-dimensional element 

In an FEM program, the shape functions are not set up new for each local element, but only once for a 

reference element. This shape function can then be applied to every global element by means of a suitable 

transformation. For the transformation, a Jacobi matrix J is set up for each element. Details are e.g. read in 

[ZienkiewiczTayler] or [Bathe]. 

2.6  SET UP SYSTEM OF EQUATIONS  

In this step of the FEM, the system of equations is set up that results from the formulation and the shape 

functions. 

In the case of our one-dimensional example from equation ( 18 ), the components 𝐾𝑖𝑗  for an element e from 

equation ( 22 ) result according to the rule 

𝐾𝑖𝑗
𝑒 = ∫ 𝜎

𝑑𝛼𝑖
𝑒

𝑑𝑥
∙
𝑑𝛼𝑗

𝑒

𝑑𝑥

𝑥2
𝑒

𝑥1
𝑒

 𝑑𝑥 

This can be calculated analytically, and the coefficients result for a single element e 

𝐾11
𝑒 = 𝐾22

𝑒 =
𝜎

𝑙𝑒
 

𝐾12
𝑒 = 𝐾21

𝑒 = −
𝜎

𝑙𝑒
 

Our one-dimensional problem has three elements and four nodes. This results in a 4 x 4 matrix for the overall 

system K. For each of the three elements, the small 2 x 2 matrix mentioned above is created, which is inserted 

into the overall matrix. The three individual element matrices and how they are inserted into the overall matrix 

are shown below 

𝐾 
1 = (

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 0 0
0 0 0 0
0 0 0 0

) ,  𝐾 
2 = (

0 0 0 0
0 𝐾11

2 𝐾12
2 0

0 𝐾21
2 𝐾22

2 0
0 0 0 0

) ,  𝐾 
3 = (

0 0 0 0
0 0 0 0
0 0 𝐾11

3 𝐾12
3

0 0 𝐾21
3 𝐾22

3

) 

The element matrices are added in the overall matrix, i.e. our overall matrix and the system of equations result 

as 

 

(

 
 

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 𝐾12

3

0 0 𝐾21
3 𝐾22

3
)

 
 
∙ (

𝑣1
𝑣2
𝑣3
𝑣4

) = (

0
0
0
0

) 

 

( 23 ) 
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A symmetrical K matrix is established that is only occupied on a narrow band of the main diagonal. This 

property is very advantageous for the fast and memory-efficient solution of the system with the help of 

modern linear equation solvers. This property of the K matrix comes from the fact that the shape functions for 

a node always only include those other nodes that are adjacent. 

2.7  INSERT BOUNDARY CONDITIONS  

Let us first deal with the Dirichlet boundary conditions. In order to insert the first boundary condition for our 

example from equations ( 19 )  𝑣1 = 𝑣0  we change the first line of the equation system ( 23 ) as follows 

(

 

1 0 0 0
𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 𝐾12

3

0 0 𝐾21
3 𝐾22

3 )

 ∙ (

𝑣1
𝑣2
𝑣3
𝑣4

) = (

𝑣0
0
0
0

) 

But now the symmetry of the K matrix has been lost. The symmetry can be restored with the following change: 

(

 

1 0 0 0
0 𝐾22

1 + 𝐾11
2 𝐾12

2 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 𝐾12

3

0 0 𝐾21
3 𝐾22

3 )

 ∙ (

𝑣1
𝑣2
𝑣3
𝑣4

) = (

𝑣0
−𝐾21

1 ∙ 𝑣0
0
0

) 

After inserting the second boundary condition 𝑣4 = 0 and restoring the symmetry, the result is  

(

1 0 0 0
0 𝐾22

1 + 𝐾11
2 𝐾12

2 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 0

0 0 0 1

) ∙ (

𝑣1
𝑣2
𝑣3
𝑣4

) = (

𝑣0
−𝐾21

1 ∙ 𝑣0
−𝐾12

3 ∙ 0
0

) 

This system of equations has only two unknowns and can therefore be written as 

(
𝐾22
1 + 𝐾11

2 𝐾12
2

𝐾21
2 𝐾22

2 + 𝐾11
3 ) ∙ (

𝑣2
𝑣3
) = (−𝐾21

1 ∙ 𝑣0
0

) 

We come to Neumann boundary conditions. If e.g. at x = L a Neumann boundary condition would exist like  

𝑑 𝑣

𝑑𝑛
= 𝑞

0
 

so it can be seen from equation ( 21 ) that this has to be inserted on the right side of the equation system, i.e. 

the system of equations ( 23 ) would be changed as follows 

(

 
 

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 𝐾12

3

0 0 𝐾21
3 𝐾22

3
)

 
 
∙ (

𝑣1
𝑣2
𝑣3
𝑣4

) = (

0
0
0
𝑞0

) 

2.8  SOLVING THE SYSTEM OF EQUATIONS  

The system of equations to be solved or the K matrix is usually a 

• sparsely populated, diagonal dominant, 

• symmetrical, 

• positive definite matrix.  
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Iterative or direct solution methods can be used for this type of matrix. Both types are available in NX 

Magnetics, whereby the direct solver is used by default. 

For the solution of our one-dimensional example, the coefficients of the element matrices are inserted 

𝐾11
𝑒 = 𝐾22

𝑒 =
𝜎

𝑙𝑒
  , 𝐾12

𝑒 = 𝐾21
𝑒 = −

𝜎

𝑙𝑒
 

It results for the entire system 

(

𝜎1
𝑙𝑒
+
𝜎1
𝑙𝑒

−
𝜎1
𝑙𝑒

−
𝜎1
𝑙𝑒

𝜎1
𝑙𝑒
+
𝜎2
𝑙𝑒

) ∙ (
𝑣2
𝑣3
) = (

𝜎1
𝑙𝑒
∙ 𝑣0

0
) 

We assume that 𝜎1 =  2𝜎2 in the example. Then the potentials arise as primary solutions as 

𝑣2 = 
3

4
𝑣0 

𝑣3 =
1

2
𝑣0 

2.9  POST PROCESSING 

The last step is post processing. Here, the sought values are derived from the primary solved variables. In the 

case of our example, the potentials at the nodes are now known and the currents at the nodes are to be 

calculated. In our example, Ohm's law 

𝒋 = 𝜎𝒆 

and the formula for the potential 

𝒆 = 𝑔𝑟𝑎𝑑 𝑣 

are used. According to 

𝒋 = 𝜎𝒆 =  𝜎 𝑔𝑟𝑎𝑑 𝑣 =  𝜎 
𝑑𝑣

𝑑𝑥
 

a current density is first calculated on the three elements. It turns out 

𝑗1 = 𝜎1  
𝑣2 − 𝑣1
𝐿/3

= 𝜎1
3

4

𝑣0
𝐿

 

𝑗2 = 𝜎1  
𝑣3 − 𝑣2
𝐿/3

= 𝜎1
3

4

𝑣0
𝐿

 

𝑗3 = 𝜎2  
𝑣4 − 𝑣3
𝐿/3

= 𝜎2
3

2

𝑣0
𝐿
= 𝜎1

3

4

𝑣0
𝐿

 

The current I itself is calculated by integrating the current density over the cross-sectional area. If the area is s, 

then is  

𝐼1 = 𝐼2 = 𝐼3 = ∫𝑗1 𝑑𝑠 = 𝜎1
3

4

𝑣0
𝐿
 𝑠  
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3 DIRECT CURRENT – SIMULATION (DC CONDUCTION STEADY STATE)  

After the theoretical and numerical background has been clarified in Chapter 2, this chapter will examine direct 

current simulation from the application-oriented side. I.e. a concrete example is to be solved using the NX 

Magnetics system. In the procedure, we stick to the 8 steps that are necessary for the general procedure for 

the EM simulation. 

3.1  TASK 

The geometry from the following figure is given (see also Figure 1). A constant electric current should flow 

through the two electrode surfaces on the left and right. 

 

The thickness is 20 mm. The material is copper with the material properties 

• Electrical conductivity of σ = 58 S/m (isotropic) 

The objectives of the simulation are: 

• The determination of the current density and its distribution in the sample structure and 

• Determination of the ohmic resistance over the sample structure or the defined electrode surfaces. 

3.2  DEVELOP FORMULATION / SELECT SOLUTION TYPE  

In this task, stationary currents are to be simulated in an electrical conductor. The excitation frequency is zero. 

Therefore, the model of direct current simulation is chosen. The corresponding formulation for solving the 

Laplace equation is activated by selecting the DC Conduction Steady State solution type in NX Magnetics. For 

the sake of generality, we choose a 3D simulation, although 2D would also be possible and in this case would 

be quite useful. 

The following figure shows the associated setting in NX Magnetics. 
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Figure 6 Solution type settings for DC simulation 

3.3  DISKRETISATION OF THE AREA / MESHING 

The discretization of the area is carried out through automatic meshing in the NX system. The creation of 

meshes is carried out in the FEM file. 2D and 3D elements are possible. 

A mesh independence study should be carried out to check the quality of the mesh. I.e. a second calculation 

should be carried out with a slightly different element size (e.g. half). If the results of the two calculations differ 

only slightly (e.g. difference <1%), the quality of the mesh has been proven. 

The various types of elements available for selection are described below. For our example we want to choose 

tetrahedra. 

3.3.1  TETRAHEDRA ELEMENTES 

Tetrahedral elements can be used in 3D solutions. They can be generated automatically on all 3D solids and are 

therefore used universally. Such a mesh is shown in the next figure. 

 

Figure 7 Tetrahedra meshing on the circular disk 
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Tetrahedral elements combine the advantages of ease of creation and good accuracy. In terms of accuracy, 

they behave a little worse than hexahedron elements. I.e. with the same number of degrees of freedom, 

hexahedra are somewhat closer to the theoretically exact result.  

3.3.2  HEXAHEDRA ELEMENTS 

Hexahedral elements can be used in 3D solutions. They can only be created on extrudable geometries, which 

significantly limits their usability. The example geometry can be extruded and a hexahedron meshing is shown 

in the next figure. 

 

Figure 8 Hexahedron meshing on the circular disk 

Compared to tetrahedra, hexahedron elements achieve higher accuracy with the same number of degrees of 

freedom. 

3.4  MATERIAL- AND PHYSICAL PROPERTIES 

The only material property required in this DC simulation is electrical conductivity. This is defined either 

isotropically or orthotropically in NX. 

• isotropically definition: 

 

Figure 9 Specification of an isotropic electrical conductivity 

• orthotropically definition: 

    

 

Figure 10 Specification of an orthotropic electrical conductivity with a local coordinate system 
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We choose isotropic properties for the example. 

3.5  SET UP OF THE SHAPE FUNCTIONS FOR THE  ELEMENTS 

In the 2D / 3D direct current simulation (DC Conduction Steady State) nodal degrees of freedom are used. 

Linear (Element Order: First) and quadratic (Element Order: Second) shape functions are possible. The type of 

shape function can be selected in NX Magnetics in the solver parameters, as shown in the next figure. 

 

Figure 11 Setting the type of shape functions 

For our example, linear shape functions are to be chosen. 

3.6  SET UP SYSTEM OF EQUATIONS  

No user action is required to set up the system of equations in NX Magnetics. 

3.7  INSERT BOUNDARY CONDITIONS  

Boundary conditions or loads in direct current simulations (DC Conduction Steady State) mean either the 

specification of electrical voltages or electrical current at the boundaries of the area. 

The definition of voltage boundary conditions can be done as a potential difference. The associated electrical 

current is established between different voltage potentials according to the electrical conductivity and 

geometry of the structure and is calculated as the result of the simulation. This type of boundary condition 

leads to simple definitions in the system of equations and has already been presented theoretically in Section 

2.7. 

For the definition of enforced electric current or voltage boundary conditions, a method is used that is 

presented under [Dular1999-1]. This method allows the definition of current in the same simple way as voltage 

or potential. A special feature here is that current and voltage are associated with the electrical conductor as 

global quantities on all electrode surfaces and are available with high accuracy, even with coarse meshes.  

In the case of our task, a current should be specified that flows between the two electrode surfaces. The 

following options are available for this: 

• Generate the current through a potential difference between the electrode surfaces. However, the 

size of the difference is not known. 

• By two current conditions with opposite signs on the two electrode surfaces. 

• By a voltage definition with zero volts on one electrode and a current definition with the desired size 

on the other electrode. 

http://www.nxmagnetics.de/


 
Methodology: EM-Simulations with NX Magnetics  24 
Created by Dr. Binde Ingenieure GmbH,  www.drbinde.de  www.nxmagnetics.de, all rights reserved 
 

The most common way is the third: a zero voltage and a current condition. This is to be done with this example. 

The next figure shows the geometry with these two conditions. 

 

Figure 12 Boundary conditions for direct current simulation: zero voltage on the right and current condition on the left electrode surface 

3.8  SOLVING THE SYSTEM OF EQUATIONS  

The system of equations is solved by executing the Solve function. After solving, the primary quantity is 

available, i.e. the electrical scalar potential v is available for the subsequent post processing. 

3.9  POST PROCESSING 

The last step is post processing. The primary variable v is further processed according to the output 

requirements and displayed as a plot or table result. 

In the case of our direct current simulation, the current density is calculated as shown under 2.9. This is output 

as a plot result and is shown in the following figure. 

 

Figure 13 Current density distribution from the example task for direct current simulation 

As a further result, the Ohm resistor was requested. Because the voltage and the current were calculated as 

integral quantities on all electrode surfaces and are available, the ohm resistance can easily be calculated using 

the formula 

𝑅 =
𝑈

𝐼
 

calculated by the program. 

This example results in an ohm resistance of 1.07e-5 ohms. An analytical calculation of this problem can be 

found in [Korolonek] and gives a value of 1.081e-5 Ohm. 

4 EM-SIMULATION IN FREQUENCY DOMAIN 
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In this chapter a concrete example for the EM simulation in the frequency domain (magnetodynamic 

frequency) is to be solved. As in chapter 3 with the direct current simulation, we assume that the theoretical 

and numerical backgrounds are clarified in chapter 2 and that the application-oriented side can be examined 

here. In the procedure, we stick to the 8 steps for the general procedure for EM simulation. 

4.1  TASK 

There is a plate with two cutouts made of electrically conductive material and a coil arranged above it, which is 
operated with alternating current [TEAM3]. See the following illustration. 

 

Figure 14 Geometry of the sample task for EM simulation in the frequency domain 

The aim of the simulation is the investigation 

• the flux density at defined points / areas (FE nodes), 

• the field of the induced eddy currents in the plate, 

• the field of eddy current losses in the sample plate, 

• the total eddy current losses in the entire sample plate. 

The dimensions can be found in [TEAM3]. This task is based on the following additional information: 

• turns in the coil:     126 

• Current in one turn:   Wechselstrom mit 10 A (Amplitude) 

• Excitation frequency:   50 Hz 

• Electrical conductivity of the coil:   58e6 S/m (isotrop) 

• Rel. magnetic permeability of the coil:  1 

• Electrical conductivity of the plate:  32760000 S/m (isotropic) 

• Rel. magnetic permeability of the plate:  1 

4.2  DEVELOP FORMULATION / SELECT SOLUTION TYPE  

In this task, time-harmonic (sinusoidal) current sources are to be simulated, which lead to a time-dependent, 

changing magnetic field and induced eddy currents. Therefore a dynamic model has to be chosen.  

It must be checked whether a high-frequency model (full wave) must be selected or whether the 

magnetodynamic model that is suitable for low and medium frequencies is enough. For this purpose, the 

wavelength λ is determined according to equation ( 13 ). It turns out 

𝜆 =
𝑐

𝑓
=
3𝑒8 𝑚/𝑠

50 𝐻𝑧
= 6000000 𝑚 

The wavelength is compared with the component size L. Because λ > L, the electromagnetic wave cannot 

develop in the component and it is enough to choose the magnetodynamic model. 
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Now it must be checked whether the simulation is carried out in the frequency domain or in the time domain. 

A time domain simulation is much more computationally expensive because of the individual time steps. It 

would therefore be advantageous to choose the frequency domain. Chapter 1.2.2.2 shows the criteria for 

simulation in the frequency domain. We check these now: 

• Sinusoidal excitation:   Criterion met 

• linear material properties:  Criterion met 

• no permanent magnets:   Criterion met 

Therefore, the dynamic model can be chosen in the frequency domain. 

This model and the corresponding formulation are activated by selecting the Magnetodynamic Frequency 

solution type in NX Magnetics. 

The following figure shows the associated settings in NX Magnetics 

 

 

Figure 15 Settings in NX Magnetics for the EM simulation in the frequency domain 

This figure also shows the corresponding output requirements resulting from the objectives of this simulation. 

The forced excitation frequency of 50 Hz must be created as a modeling object in register Frequency (not 

shown in the figure). 

4.3  DISKRETISATION OF THE AREA / MESHING 

In addition to the plate and the coil, the air must also be meshed because the magnetic field must be 

considered here. In addition, an infinity mesh should be used. 

4.3.1  CAD PREPARATIONS AND MESH-MATING-CONDITIONS 

The CAD geometry includes an area for the air, which is often created as a sphere. The components are 

subtracted from this air area in CAD. Mesh mating conditions with the Glue-Coincident setting are created in 

the FEM file, which ensure that the subsequent meshes will have identical nodes at the material boundaries. 
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Figure 16 Representation of the air volume and the subtracted components 

At the boundary of the volume, a condition is chosen later that forces the field to be tangential. Therefore 

should 

• either the volume of air is chosen so large that the field lines can develop in it almost unhindered, 

• or infinity elements are used. 

In our case we want to make use of the second option - the infinity elements. 

4.3.2  MESHING THE PLATE WITH CONSIDERING THE SKIN DEPTH  

For problems with eddy currents, the skin depth δ in electrically conductive areas must always be considered. 

In this boundary area of the conductive structure, which is characterized by the skin depth, the meshing must 

have at least one, better 2 or up to 5 element layers. This is necessary in order to enable the eddy currents to 

develop in the simulation. It is also helpful if this boundary layer area is meshed in layers with hexahedron 

elements. The skin depth in the plate is calculated according to equation ( 12 ) as 

𝛿 = √
2

𝜔𝜎𝜇0𝜇𝑟
= √

2

2𝜋 ∙ 50𝐻𝑧 ∙ 32760000
S
m
∙ 4𝜋10−7 ∙ 1

≈ 12,4 𝑚𝑚 

At 6.35 mm, the plate thickness is smaller than the skin depth. Therefore, the elements in the plate do not have 

to be particularly fine, because a pronounced thin eddy current layer is not to be expected. It should be noted 

that the skin depth becomes smaller as the frequency increases. 

In this example, the plate is meshed with hexahedra, because this is possible due to the geometry. Tetrahedral 

elements would also be possible without any problems. The mesh is shown in the next figure. 

 

Figure 17 Representation of the cross-linking of the sample plate 

4.3.3  MESHING THE COIL WITH DEFINITION OF TH E STRANDED DIRECTIONS 
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Hexahedra are also suitable for meshing the coil, whereby tetrahedra would also be suitable. The mesh can be 

created without any further special features and there are also no high demands on the fineness, because no 

results are required in the coil itself. The mesh is shown in the next figure on the left. 

  

Figure 18 On the left the representation of the network of the coil. Right the winding directions 

Because it is a wound coil with 126 turns, it is necessary that the directions of the turns are communicated to 

the mesh. This is done by specifying a guide curve, in the direction of which each element of the coil 

determines a direction vector. The guide curve can be a circle, as in our example. However, it can also be a 

spline curve with any curvature that describes the direction of the windings on bobbins with a complex shape. 

The guide curve is defined in the coil mesh with the aid of the Mesh Associated Data function. In our example, 

one of the circle edges is selected. With the Preview button, the direction of each element can be checked as 

shown in the previous figure on the right. 

4.3.4  MESHING THE AIR WITH HEX-TET-TRANSITION 

The next step is the meshing of the air. Due to the geometry, this must be done with tetrahedral elements. The 

transition from the already existing hexahedra to tetrahedra should take place via pyramid elements. This way 

enables correct processing due to the degrees of freedom used on element edges. 

The pyramid elements are created as a separate mesh that can also be viewed. The following figure shows this 

on the left. The rest of the air mesh is shown on the right. 

 

Figure 19 On the left the representation of the pyramid elements for the Hex-Tet transition. On the right the air mesh. 

4.3.5  MESHING WITH INFINITY ELEMENTS  

The use of infinity elements is helpful when the electromagnetic field to be simulated can spread infinitely in 

the air. To keep the simulation model small, the meshing in the simulation should only include an air area that 
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is close to the geometry of interest. In order to capture the infinitely large airspace nonetheless, infinity 

elements can be used. These elements use the same shape functions as other elements. The only difference is 

in the transformation from the local coordinate system into the global one with the help of the Jacobi matrix J. 

Here, the outer edge of the layer of infinity elements is transformed into infinity. This corresponds to a 

distortion of the calculation area in this area.  

The following figure shows this effect: Without infinity elements on the left and with infinity elements on the 

right. The area with infinity elements is the outer layer with 3 quad elements. On the left the field lines are 

compressed because they have to remain in the airspace that is too small. On the right, they can expand 

realistically. This of course has a strong effect on the field strength in the area of interest.    

 

Figure 20 Field lines at the core with a coil model. Left without infinity elements, right with. 

Now we come to the concrete creation of these special elements in NX Magnetics. 

The infinity elements are created in an additional layer on the outside of the air volume. If infinity elements are 

used, the air must be either a sphere or a cuboid. 

If the air is available as a 3D sphere, the 3D layer for the infinity elements can be created in a very simple way 

by extrusion of the outer element surfaces. This is shown for our example in the next figure. 

 

Figure 21 A layer around the air sphere with infinity elements is shown. For better visibility, an opening is shown and the air sphere is 

not shown. 
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As a rule of thumb, the layer thickness of the infinity elements should be around a third of the radius of the air 

sphere. In this layer there should be about 5 to 10 elements above the thickness. 

The parameters of these infinity elements are defined in the next section. 

4.4  MATERIAL- AND PHYSICAL PROPERTIES 

Next, the material and physical parameters are defined. This is done in the Mesh Collectors and the Physical 

Property Tables (physicals for short) contained in the FEM file. 

The areas coil, plate and air are defined with the usual physical of the preset type SolidPhysical. Only the 

infinity elements are defined with a physical of the Infinity3D type, which must be activated in the mesh 

collector of the mesh. 

4.4.1  COIL 

The properties of the coil are Material and a Stranded conductor model. 

The required material parameters are 

• relative Permeability = 1 

• Electric Conductivity = 58e6 S/m 

The required parameters for the Conductor Model are 

• Model: Stranded, Vectors defined in Mesh Associated Data 

• Number of Turns: 126 

• Fillfactor: 1 

• Coil Section Area: 400 mm2 

4.4.2  PLATE 

The properties of the plate are Material and the preset Massive conductor model. 

The required material parameters are 

• relative Permeability = 1 

• Electric Conductivity = 32760000 S/m 

4.4.3  AIR 

The air receives the following material properties 

• relative Permeability = 1 

• Electric Conductivity = 0  S/m 

Zero conductivity is required for air to be recognized as non-conductive. 

4.4.4  INFINITY ELEMENTS 

The infinity elements are given the following parameters: 

• Physical Property Type: Infinity3D 
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• Shape: Spherical Shell 

This type is suitable for use on spherical volumes. 

• Inner Radius at Shell: 75 mm 

Here the radius at the boundary of the air sphere to the infinity elements is entered. 

• Shell Thickness: 30 mm 

The entire thickness of the infinity layer is entered here. 

4.5  SET UP THE SHAPE FUNCTION FOR THE  ELEMENTS 

No information from the user is required for setting up the shape functions. In the solver parameters, a 

distinction can be made between first (linear) and second (quadratic) order, whereby we want to calculate with 

first order. 

4.6  SET UP THE SYSTEM OF EQUATIONS 

No information from the user is required to set up the system of equations. 

4.7  INSERT BOUNDARY CONDITIONS  

A constraint of the type Zero Potential - Flux tangent is required at the boundary of the calculation area. With 

this condition, the potential a on the boundary surface is set to zero. With the Rand term 

 < (𝒏 × 𝜇−1𝑟𝑜𝑡 𝒂 ) , 𝒂′ >dΩ from equation ( 16 ) results, that the magnetic field h is directed tangentially at the 

boundary and is equal to zero. 

As a second constraint, a load is applied to the coil which directly defines the given electrical current, i.e. it is 

inserted in equation ( 16 ) in the term < 𝒋𝑠 , 𝒂
′ >Ωs 

4.8  SOLVING THE SYSTEM OF EQUATIONS  

To solve the system of equations, the user only needs to execute the Solve function. 

4.9  POST PROCESSING 

The primary result of the calculation is the two potentials a and v.  

• The desired magnetic flux density can be calculated using equation ( 8 ) as follows 

𝒃 = 𝑟𝑜𝑡 𝒂 

• The eddy current distribution in the plate results from equation ( 9 ) and the Ohm equation  j = σ e to 

𝒋 = 𝜎𝒆 = 𝜎(−𝜕𝑡𝒂 − 𝑔𝑟𝑎𝑑 𝑣) 

• The field of eddy current losses P (Eddy Current Losses) results from the eddy current distribution 
through the relationship  

𝑃 =
𝒋𝟐

𝜎
= 𝜎 ∙ (−𝜕𝑡𝒂 − 𝑔𝑟𝑎𝑑 𝑣)

2 

• The total eddy current losses in the entire sample plate result from the integration of the eddy current 
losses in the plate geometry. 
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